EXAMINING MODEL QUALITIES AND THEIR IMPACT ON DIGITAL TWINS

Bentley James Oakes, Cláudio Gomes, Joachim Denil, Julien Deantoni, João Cambeiro, John Fitzgerald, and Peter Gorm Larsen

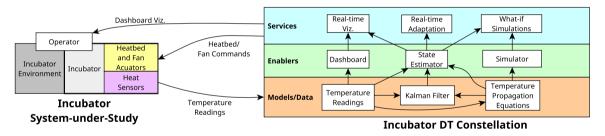
Université de Montréal, Aarhus University, Flanders Make and University of Antwerp, Université Côte d'Azur - Sophia Antipolis, NOVA University, Newcastle University

May 24th, 2023

Impact on DT Services

INCUBATOR RUNNING EXAMPLE

Purpose:


Egg incubation

Heatbed Fan Temperature Sensors Temperature Sensor Content Stable temperature 100,000,000,000 Controller

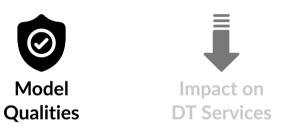
Feng et al. (2021). The incubator case study for digital twin engineering. arXiv preprint arXiv:2102.10390.

DTs are a virtual replica of a physical system Offer services, to provide information or control in closed-loop with system

Oakes et al. (2022). A Digital Twin Description Framework and its Mapping to Asset Administration Shell. arXiv preprint arXiv:2209.12661.

Challenges:

- DT services relies on models to capture system behaviour
- DT and physical system evolve over time (*degrade*, *upgrade*)


Objective: Define concepts to *discuss quality of DT services* Go further than "high-fidelity"

Contributions:

- Formally define four model qualities
- Discuss impact on DT services
 - Quality degradation makes services unreliable

Motivation

Term	Example	Details
System	Incubator	Box, object, heating element, controller
Environment	Room around incubator	Temperature, table,
Context	$\begin{array}{l} \text{Room} \rightarrow \text{incubator} \\ \text{influence} \end{array}$	Ambient room temp. affects heating rate

Properties

- **1** Warm up from 20 to 30°C in 10 seconds
- **2** Remain $< 80^{\circ}$ C at all times

Created for purpose, for certain properties

Example: Differential equations for modelling heat propagation

$$\dot{T}_{heater} = \frac{1}{C_{heater}} \cdot \left(V \cdot I \cdot \Delta t - G_{heater} \cdot (T_{heater} - T_{boxair}) \right)$$
$$\dot{T}_{boxair} = \frac{1}{C_{air}} \left(G_{heater} \cdot (T_{heater} - T_{boxair}) - G_{box} \cdot (T_{boxair} - T_{room}) \right)$$

Model created by setting parameters

Satisfaction

In particular context, does system satisfy property?

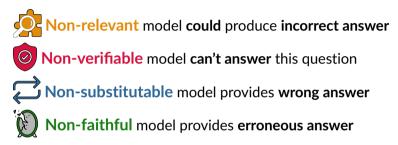
 $\llbracket S \rrbracket_{C_S} \vDash p$

"In cold room, does incubator reach 80°C?"

Model Satisfaction In model's context, does model satisfy property? $[[M]]_{C_M} \models p$ "When simulated, do equations reach 80°C?"

Model Qualities:

Relevancy: Does model's context match the system's context?


Verifiability: Can we check property satisfaction on model?

Substitutability: Does satisfaction result match the system result?

 \mathbf{O}

Fidelity: How closely do the results match?

Consider safety property "does the incubator reach 80°C?"

Model without these qualities is invalid

Later: DT services using invalid models are invalid/useless

Model created for particular context **Relevant** only within that context

Outside context, property satisfaction *may* be unreliable

Example: Temperature propagation equations

Relevant In	Not Relevant In
Summer	Winter (below freezing)
Normal room	Mountain-top (low-pressure), space (no air)

$$relevant(M, S) \stackrel{def}{=} \forall i_S \in C_S|_{C_M}, \exists i_M \in C_M \text{ such that } i_M \supseteq i_S$$

Capture relevancy with validity frames - Denil et al.

Can we verify whether a model satisfies a property?

$$verifiable(M) \stackrel{def}{=} \forall p_i \in P_M, \llbracket M \rrbracket_{C_M} \stackrel{?}{\models} p_i$$

Example:

Can temperature equations model provide answer for "is temperature always < 80°C"?

Depends on model formalism, checking methods, computational resources

- Simulating differential equations can provide an answer
- Formal model-checking may require *more-appropriate* formalism

Can the model substitute for the system for property satisfaction?

substitutability
$$(S, M) \stackrel{def}{=} \forall p \in P_M, \ (\llbracket M \rrbracket_{C_M} \vDash p) \Leftrightarrow (\llbracket S \rrbracket_{C_S} \vDash p)$$

Example:

If temperature model reports that the temperature is always $< 80^{\circ} \text{C},$ is this true for the system?

How faithful is the model to the system?

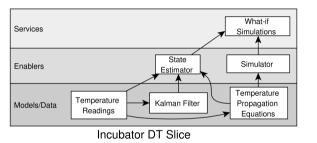
Example:

How closely do temperature equations match the system's actual temperature?

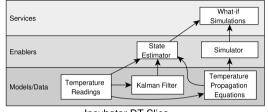
$$g_{p_i}(\llbracket M \rrbracket_{C_M}, \llbracket S \rrbracket_{C_S}) < \epsilon_i \implies (\llbracket M \rrbracket_{C_M} \vDash p_i) \Leftrightarrow (\llbracket S \rrbracket_{C_S} \vDash p_i)$$

Note: Distance function g per property, and error ϵ per property

Measure fidelity: Muñoz et al., Biglari and Denil


Relevancy: Does model's context match the system's context? Verifiability: Can we check property satisfaction on model? Substitutability: Does satisfaction result match the system result? Fidelity: How closely do the results match?

Motivation

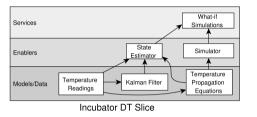


- Data flows "up" through the DT
- Services rely on enablers
- Enablers rely on models
- Assumption: Computation is in the enablers, services just report

Oakes et al. (2022). A Digital Twin Description Framework and its Mapping to Asset Administration Shell. arXiv preprint arXiv:2209.12661.

QUALITY CONSEQUENCES FOR DT SERVICES

Property: Is incubator always < 80°C?


Incubator DT Slice

Relevancy: Relevant service \leftarrow all models relevantVerifiability: Property must be verifiable for ≥ 1 modelSubstitutability: Property must be satisfied by ≥ 1 modelFidelity: Faithful service \leftarrow all models faithful

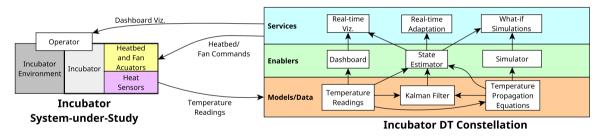
If the DT or system evolves, order for checking qualities? Limited time for *safety property*: "temperature < 80°C"

Verifiability Model appropriate for property?
Substitutability Satisfaction result? Approximation first?
Relevancy Non-relevant models could be useful
Fidelity Low fidelity results could be useful

Adaptations: Model switching or re-calibration

Relevancy: Does DT service's context match the system's context?

Verifiability: Can we check property satisfaction on service?


Substitutability: Does satisfaction result match the system result?

Fidelity: How closely do the results match?

Future work: Integrate into DT framework(s), deepen formalization

Examining Model Qualities and Their Impact on Digital Twins Oakes, Gomes, Denil, Deantoni, Cambeiro, Fitzgerald, and Larsen bentleyoakes.com DTs are a virtual replica of a physical system Offer services, to provide information or control in closed-loop with system

Oakes et al. (2022). A Digital Twin Description Framework and its Mapping to Asset Administration Shell. arXiv preprint arXiv:2209.12661.

All icons from www.flaticon.com

- Gears, shield, question marks, puzzle piece, and magnifying glass icons made by Freepik
- Down arrow by Kiranshastry
- Lightbulb by Good Ware
- Exchange by itim2101